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Non-Equilibrium Phonon Processes and Degradation 

in Gigahertz Nanoscale Mechanical Resonators 

G. J. Iafrate (PI) 

gjiafrate@ncsu.edu 

North Carolina State University, Raleigh, NC 27695 

 

Report Summary 

 

Objective: 

The objective of this study is to identify and quantify the loss and degradation mechanisms 

relevant to frequency control resonator performance as the resonator dimensions reduce to 

the nanodimensional spatial scale. The Department of the Army interest in scaling such 

devices into the nanodimensional region arises from the technical notion that such 

resonators can be designed to operate at frequencies into the low GHz region thus providing 

a low cost, integratable NEMS solid state device option for ultrafast frequency control 

electronic applications relevant to jam resistant secure communications. Inherent in the 

nanoscale domain is the dynamics of non-equilibrium phonon processes which play a 

central role in orchestrating loss mechanisms in general and in trade off of surface to 

volume effects as the resonator scales down. In this study, use is made of the Euler-

Bernoulli-Boltzmann approach to capture and study the essence of the dominant physical 

considerations. 

 

Approach: 

The technical approach considers non-equilibrium heat generation and redistribution 

processes from mechanical strain during high frequency NEMS operation beyond the 

conventional heat diffusion and local temperature approximation. A semiclassical phonon 

dynamical picture is introduced to go beyond the conventional models. Scaling laws 

relevant to the appropriate phonon transport regimes and their transition boundaries are 

delineated, analyzed, and compared with results of detailed microscopic descriptions. Thus, 

the research approach involves scaling analysis, coupled with analytical and numerical 

modeling of phonon flow and heat redistribution in nanoscale resonators. Specifically, the 

following technical milestones were pursued: 

1. Establish a picture of the beam dynamics in a non-equilibrium thermodynamical 



framework. This requires a more refined look at the approximations of the Euler-Bernoulli 

equation with shear corrections to the beam dynamics, and generalizations of stress-strain 

relations in the presence of thermal gradients. 

2. For intrinsic phonon-mediated dissipation mechanisms, formulate scaling laws 

based on relations between the key spatial and temporal characteristics of phonons, i.e., 

mean free path l
ph

 and phonon relaxation time τ
ph

, and the relevant physical parameters 

of the NEMS structure, that is beam thickness t, length L, and resonator operational 

frequency ν.  

3. Scaling laws relevant to the appropriate phonon transport regimes and their 

transition boundaries will be analyzed and compared with results of more microscopic 

analysis and theory.  

4. Formulate robust treatment of phonons under non-equilibrium thermodynamic 

conditions in flexural nanobeams by introducing Boltzmann framework for description of 

phonon transport; conduct analysis of internal thermal phonon flow inside the beam.  

5. Develop a reliable quantification of the Q factor in presence of non-diffusive 

phonon transport. 

 

Accomplishments: 

• Material parameters were successfully identified for the basic high frequency NEMS 

resonator designs; “operational frequency vs. spatial dimensions” maps have been 

established for the NEMS resonator from the Euler-Bernoulli equation.  

• Major intrinsic dissipative mechanisms related to thermoelastic loss and phonon-phonon 

interactions and their scaling properties have been identified and strategically mapped 

to provide insightful physical analysis.  

• From the developed scaling studies, it is theoretically noted that, in the 1–10 GHz 

operational frequency regime, the NEMS resonator thermal dynamics routinely goes 

beyond the limits of the local temperature approximation, not at all due to the often 

considered time constraint of the high frequency limit (which requires ν≈τ
−1

ph, with 

τ
ph
≈10ps at room temperature), but, in contrast, due to sharp spatial inhomogeneity in 

strain pattern induced by flexure across the thin (t<l
ph

, with l
ph
≈50nm at T=300 K in 



Si) beam cross section. This spatial consideration leads to rapid ballistic transfer of 

phonons across the beam and suppression of the dissipation mechanism associated with 

the entropy production due to inter-branch phonon-phonon thermal equilibration. The 

theoretical analysis is formulated and conducted in the Boltzmann framework to capture 

the proper phonon dynamics. 

 

Journal Publication: 

Results of extensive analysis and conclusions were recently published by A. A. Kiselev and 

G. J. Iafrate in Phy. Rev. B. 77, 205436 (2008); Publication is attached as Appendix A; 

detail summary, conclusion, and bibliography is contained therein. 
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Phonon dynamics and phonon assisted losses in Euler-Bernoulli nanobeams
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HRL Laboratories LLC, Malibu, California 90265, USA
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Nonequilibrium phonon processes and related degradation effects are treated for a Euler-Bernoulli flexural
beam undergoing scaling from a micro to nanospatial regime. For the scaling lengths under consideration, the
lowest resonator mode is in the frequency range of 1–10 GHz. In this range, it is found that the beam thermal
environment routinely exceeds the limits of validity for the local temperature approximation; this is due to
sharp inhomogeneities in strain pattern across the thin beam cross sections induced by flexural motion as
opposed to the often assumed temporal dynamics of high frequency operation. In a Euler-Bernoulli-Boltzmann
framework, an analysis of the internal phonon flow in the flexural beam is conducted, and dissipative losses are
evaluated. The complexity of the microscopic phonon dynamics is delineated and strategically graphed in
terms of the parameters characterizing the flexural beam and the phonon system therein. In limiting cases, two
major intrinsic dissipative mechanisms are operative, one due to the diffusive spatial redistribution of phonons
resulting in heat transfer and thermoelastic loss, and the other due to thermalization of the local phonon
population distorted by strain resulting in the manifestation of the Akhiezer effect. In the frequency domain of
interest, these two loss mechanisms lose their distinctive character with decreased spatial scaling and transition
to a unified dissipative process governed by the ballistic phonon transfer across the beam.

DOI: 10.1103/PhysRevB.77.205436 PACS number�s�: 66.70.�f, 63.22.Gh, 62.80.�f

I. INTRODUCTION

Nanoelectromechanical systems �NEMS� have emerged
as a very attractive concept for miniaturized devices, resona-
tors, and actuators in application areas spanning the broad
fields of metrology, engineering, life science, and
medicine.1,2 In particular, microsized resonators and cantile-
vers have been workhorse devices for light-weight, on-chip,
and high-quality �high-Q� elements for frequency control
electronics as well as actuator and sensor components for
smart systems. As such devices are scaled from the micro to
the nanolength scale, the lowest resonator mode of operation
increases into a desirable high frequency range of 1–10 GHz.
In this frequency range, the key question of concern becomes
whether there are fundamental intrinsic physical limitations
that come into play that might prohibit high-Q operation; this
question provides the main motivation for our work.

Numerous mechanisms have been proposed previously as
possible limitations to the quality factors of micro and
nanoresonators.3–6 Some mechanisms can be identified as ex-
trinsic to the microresonator and, thus, in principle, can be
suppressed by engineering design. For example, air damping
can be eliminated in the vacuum-operated resonators. As
well, doping impurities, the effect of the attachment and/or
support structure, and surface absorption-desorption pro-
cesses can also be considered as external mechanisms. In-
trinsic loss mechanisms, on the other hand, persist due to the
inherent material properties of the beam. For example, intrin-
sic phonon-mediated dissipation mechanisms are related to
the processes of heat redistribution and entropy production.
This happens during beam mechanical dynamics because
spatially inhomogeneous strain is induced in the beam mate-
rial by the motional flexure. Local compression and dilation
directly affects the phonon dispersion, thereby leading to the

creation of nonequilibrium phonon distributions, temperature
gradients, and, consequently, heat transfer.

In lowest order, these processes are most simply treated
by the standard theory of thermoelasticity that essentially
relies on the validity of the classical heat diffusion law, the
so-called Fourier’s law,5,7,8 where heat flow is proportional to
the macroscopic temperature gradient in the material and the
thermal conductivity is the coefficient of proportionality.
This lowest order thermoelastic methodology does not in-
clude temporal relaxation or higher order non-Fourier heat
flow effects. In this regard, Cattaneo and Vernotte introduced
a heuristic temporal relaxation time into the Fourier heat
flow process to generate a hyperbolic heat equation, which
describes a nondiffusive heat transfer by means of the
quickly decaying heat waves. In particular, with respect to
the losses in NEMS, Sun et al.9 built on the temporal relax-
ation approach by incorporating a non-Fourier heat flow term
into their analysis; it is worth mentioning that for the mag-
nitude of parameter values numerically considered in their
paper, the effect of non-Fourier heat transfer is minimal. Fur-
thermore, in the work of Joshi and Majumdar,10 the “Fouri-
er’s law” and “Cattaneo” nonstationary solutions for a simple
one-dimensional geometry were directly compared to the
analysis from a microscopic Boltzmann treatment; it was
comparatively noted that both the Fourier and Cattaneo re-
sults were inadequate on short spatial and temporal scales.
This comparative analysis points to the notion that micro-
scopic phonon dynamics should be accounted for holistically
in order to facilitate a more complete and accurate analysis
of the heat redistribution processes in nanodimensional struc-
tures. It is worth mentioning that the overwhelming com-
plexity of solving directly the Boltzmann equation, even for
relatively simple configurations, brought to existence the ad-
vanced simplifying schemes to numerically treat heat redis-
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tribution processes, such as the nonlocal heat conduction
model,11 and the ballistic-diffusive heat-conduction
equations.12

Another intrinsic phonon-mediated loss mechanism is
known as the Akhiezer effect.13 This effect is most com-
monly considered in relation to the attenuation losses suf-
fered by ultrasonic waves in dielectric crystals at elevated
temperatures. In essence, due to anharmonicity, a strain
modulates the phonon frequencies �and, most important, dif-
ferently for different phonon modes�; thus, the original pho-
non distribution becomes distorted and requires a micro-
scopic time to reestablish phonon equilibrium locally. This
irreversible process results in an absorption of elastic energy
to generate entropy in the phonon subsystem. A simple quali-
tative treatment of this process was reported by Bömmel and
Dransfeld.14 A more advanced microscopic treatment was de-
veloped by Woodruff and Ehrenreich.15

Unlike ultrasonic waves in infinite solids, where the scale
of the spatial inhomogeneity of the strain pattern is defined
solely by the plane-wave frequency through the bulk disper-
sion law, the strain pattern associated with flexural waves in
thin beams and membranes is aptly influenced by the bound-
ary conditions associated with the mechanical motion of the
finite material domain. As a result, the spatial and temporal
scales of the strain pattern can be controlled more indepen-
dently. Specifically, sharp spatial inhomogeneity in strain
pattern on the relevant scale of the thermal phonon mean free
path can be routinely induced by the flexure in the cross
section of the gigahertz thin beam. This simple observation
has direct and important consequences for the magnitude and
variation of intrinsic losses in nanoscale resonators.

In the general framework of this paper, the detailed pho-
non dynamics is established for Euler-Bernoulli flexural
beams; as well, phonon-related losses and degradation
mechanisms are identified for a mechanical resonator beam
configuration as the beam size reduces to the nanodimen-
sional spatial scale and the frequency of operation rises into
the low GHz spectral region. The technical approach consid-
ers nonequilibrium heat generation and redistribution pro-
cesses from mechanical strain during high frequency NEMS
operation beyond the conventional heat diffusion and local
temperature approximation. Specifically, a semiclassical
phonon dynamical picture is introduced, allowing detailed
microscopic analytical and numerical modeling of phonon
flow and heat redistribution in Euler-Bernoulli nanoscale
resonators. Relevant mechanistic phonon transport regimes
and related transition boundaries are identified by delineating
the appropriate scaling laws.

In Sec. II, the salient features relevant to the dynamics of
the Euler-Bernoulli flexural beams are reviewed and specific
attention is devoted to the structure of the spatially inhomo-
geneous time dependent strain pattern developed inside beam
material. Section III is focused on the formulation and analy-
sis of phonon dynamics under the nonequilibrium thermody-
namic conditions in flexural nanobeams within a Boltzmann
framework; in particular, a reliable quantification of the nan-
oresonator Q factor is developed in the presence of nondif-
fusive phonon transport. In Sec. IV, a numerical analysis of
the phonon assisted losses in the double clamped flexural
NEMS resonator is provided as an illustrative example of the

methodology. The functional dependence of the loss on the
characteristics of the flexural and phonon systems is estab-
lished and graphically portrayed. Specifically, domains of
phonon-related dissipative mechanisms7,13 are identified and
analyzed in terms of their scaling attributes relative to the
key spatial and temporal characteristics of the phonons, i.e.,
mean free path and phonon relaxation time, as well as the
relevant physical parameters of the NEMS structure, i.e.,
beam thickness, length, and resonator operational frequency.
In Sec. V, results are summarized, and further considerations
concerning the integrity of Q factor are discussed.

II. PICTURE OF THE BEAM DYNAMICS

Flexural modes available to the double clamped resonator,
cantilever �for large length to thickness aspect ratios L / t
�10�, or in the model of an infinite beam �then L is the
period of the mode� can be described analytically by the
Euler-Bernoulli equation of solid mechanics in the limit of
no energy dissipation and in the continuum
approximation.1,16 Applying this long-beam approximation
of the Euler-Bernoulli theory, one arrives at the equation for
the transverse y displacement u�z , t� for an undriven beam
along the direction of its length z as

�A
�2u

�t2
+

�2

�z2EI
�2u

�z2 = 0.

Here, � is the material density, A is the area of the beam
cross section, E is the Young modulus, I is the cross-
sectional area of the moment of inertia �bending moment of
inertia�, and EI is known as the flexural rigidity of the beam.
The boundary conditions specify the beam clamping condi-
tions for finite structures. In particular, for the rigidly
clamped boundary condition u=0 and u���u /�z=0. Thus,
for the double clamped resonator �clamped at beam ends at
z=0 and z=L�, the eigensolution for a homogeneous beam of
a rectangular cross section wt �i.e., A=wt and I=wt3 /12�,
can be written in phasor form as

un�z,t� = Un�z�ei�nt,

where

Un�z� = Cn1�cos�knz� − cosh�knz�� + Cn2�sin�knz� − sinh�knz�� ,

with frequency

�n =�EI

�A
kn

2 =�E

�
tkn

2. �1�

Here, kn is chosen to satisfy the boundary conditions and is a
solution of the transcendental equation,

cos�knL�cosh�knL� = 1.

It is found that knL�4.730, 7.853, and 10.996 for the first
three modes. The fundamental frequency �1 of the oscillator
rises as the resonator size and/or aspect ratio �length to thick-
ness� is reduced as desired.

It is noted that while the Euler-Bernoulli theory works
well for the relatively long beams, the importance of the
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Timoshenko rotational inertia and shear corrections17 to the
beam dynamics increases progressively for smaller L / t ra-
tios. Also, our treatment of double clamped beams here is
limited to small flexural vibrations, which assumes that
�U�z��� t; nonlinearities are set into play through the qua-
dratic dependence on U in the beam lengthening term,1 �L
�	Ldz�U��z��2 /2, as larger flexural vibrations affect the
resonator dynamics. For particular classes of flexural sys-
tems, such as carbon nanotubes with naturally small thick-
nesses, even very moderate displacements would lead to
resonator dynamics beyond the linear regime.18 On the other
hand, for cantilevers, the significance of this deviation from
linearity is largely alleviated.

The structure of the strain field corresponding to a par-
ticular flexural mode can be established as follows: For thin
beams in the linear regime, the situation is very simple,16 the
only nonzero components of the strain tensor are defined by
the mode deflection amplitude u�z� as

uzz = − y
�2u

�z2 , �2�

and

uxx = uyy = − �uzz, �3�

where � is known as the Poisson ratio. The trace of the strain
tensor is then,



i

uii = − �1 − 2��yu�. �4�

The linear energy density along the beam is given in pha-
sor form by

hW�z� =
�A�2

2
�U�z��2 +

EI

2
�U��z��2,

where the first term is the kinetic energy and the second term
is the potential energy of flexural deformation of the beam.
The kinetic energy density, in phasor form, is proportional to
the square of the fundamental mode eigenfunction U1

2 and
the flexural deformation energy is proportional to �U1��.2
Both components of the energy distribution are highly
peaked along the beam and scale in accordance with L. How-
ever, as L is reduced, the relative amounts of the kinetic and
flexural energies along the beam remain unchanged for the
Euler-Bernoulli normalized eigenmode U1; thus, the kinetic–
flexural energy partition could vary with L only by consid-
ering the higher order corrections to the Euler-Bernoulli
equation.

Finally, the total energy of the mechanical oscillation is
given by

W = �
L

dzhW�z� . �5�

III. PHONONS UNDER NONEQUILIBRIUM
THERMODYNAMIC CONDITIONS

IN FLEXURAL NANOBEAMS

A quantitative description for the processes of heat gen-
eration and redistribution in thin flexural beams is developed

by applying the Boltzmann formalism to capture the dynam-
ics of the nonequilibrium phonon distribution resulting from
the spatially inhomogeneous mechanical compression and
dilation. The appropriate multidimensional integro-
differential equation is derived for the phonon distribution
function, including the modulation of phonon frequencies by
spatially inhomogeneous strain, phonon ballistic transfer, and
scattering processes, leading to the thermalization of the pho-
non ensemble. This treatment allows for a reliable quantifi-
cation of the phonon flow in the resonator, and an analysis of
the quality factor Q in the presence of nondiffusive phonon
transport.

A. Phonon Hamiltonian in the presence of strain

The space and time-modulated Hamiltonian for a phonon
with the wave vector q can be written as

H = 	
�q,r,t� = 	
0�q��1 + ��q,r,t��;

here, for the simplicity of the notation, q includes both the
wave vector and index of the phonon branch. In the presence
of strain, the lowest order expression for the modulation co-
efficient � is given13 by

��q,r,t� = − 

ik

�ik�q�uik�r,t� , �6�

where uik is the strain tensor and �ik�q� is the generalized
Grüneisen tensor.15 The only nonzero components of the
strain tensor in the beam are those in Eqs. �2� and �3� above.
Then, one can write explicitly from Eq. �6�,

��q,y,z,t� = ��1 + ���zz�q� − �

i

�ii�q�yu��z,t� . �7�

In replacing all of the diagonal tensor components �ii with a
single Grüneisen constant �, we can reduce Eq. �7� further,
so that,

� = − �

i

uii = �1 − 2���yu��z,t� . �8�

The simplification that � assumes a scalar and q-independent
form was invoked historically in the early development of
the bulk thermal expansion theory and has served well in
simple situations requiring only the averages over the bulk
phonon spectrum; however, in the limiting case of a nanore-
gime, the averaging with respect to 
i�ii and �zz is not easily
justified, especially when one needs to accommodate the in-
herent physically present spatial anisotropy of the system in
the analysis of the degradation processes. Moreover, it fol-
lows that in choosing �ij�q� as a single constant, it artificially
precludes the manifestation of the Akhiezer effect; in order
to preserve the physical presence of the Akhiezer phenom-
ena, potentially important at the NEMS spatial and frequency
scale yet keep the analysis tractable, one could allow for two
different constants �1 and �2 to mimic the variation in tensor
�ij�q�—an approach originally proposed by Bömmel and
Dransfeld.14 This two parameter approach is utilized later in
this section.
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B. Boltzmann equation

The quantitative description of the heat generation and
redistribution processes in thin flexural beams is developed
using the Boltzmann formalism. The linearized Boltzmann
equation is derived to capture the responsive development of
the nonequilibrium phonon distribution resulting from the
spatially inhomogeneous mechanical compression and dila-
tion during flexure. For the instantaneous distribution func-
tion N�q ,r , t� for the population of the phonons in the beam,
the Boltzmann equation is expressed as

� �N

�t
�

coll
=

�N

�t
+

�N

�r
·
�


�q
−

�N

�q
·
�


�r
.

Splitting N into the “equilibrium” part N0�	
 /kT0�, corre-
sponding to the local phonon frequencies 
 defined by the
spatially inhomogeneous strain and the true equilibrium tem-
perature T0, and the nonequilibrium part,

N1�q,r,t� = N�q,r,t� − N0�	
/kT0� , �9�

one can linearize the original Boltzmann equation for the
phonon distribution function to arrive at19

� �N

�t
�

coll
=

�N1

�t
+ N0�

	
0

kT0

��

�t
+ v0 ·

�N1

�r
. �10�

Here,

N0�
,T� � N0�	
/kT� = �exp�	
/kT� − 1�−1

is the thermal equilibrium distribution function, N0� is its de-
rivative in respect to x=	
 /kT, and v0=�
0 /�q is the mode
velocity.

Invoking the effective relaxation time approximation, one
can write for the collisional term,

� �N

�t
�

coll
=

N − N0�
,T�
ph

, �11�

where ph�q� is the phonon relaxation time. There are a num-
ber of subtle issues associated with Eq. �11�. First, it is a
heuristic approximation to the realistic microscopic descrip-
tion for the phonon-phonon interactions.20 Even then, actu-
ally two classes of phonon-phonon scattering processes take
place: The normal processes that conserve total momentum
of the colliding pair and umklapp processes that do not con-
serve total momentum. As written in Eq. �11�, it is implicitly
assumed that the umklapp processes dominate so that the
asymptotic phonon distribution can be characterized by a
single parameter—local equilibrium temperature T. Further-
more, this local equilibrium temperature T should not be de-
fined by averaging the phonon distribution only at a single
spatial point; instead, it should be obtained by averaging
over the area of the size of about lph. Thus, it is clear that T
should approach T0 as the beam thickness becomes smaller
than lph. Nevertheless, it was shown15 that treating T as a
single-point quantity should produce comparable results for
the losses even in the limit of t� lph.

Now, we consider a case of substantially different spatial
scales L� t, suitable for the Euler-Bernoulli-Boltzmann reso-
nator. In particular, this allows for the treatment of all ther-
mal transfer as essentially one-dimensional—taking place

along the y axis in the plane of the beam cross section. Lin-
earizing the collision term of Eq. �11� with help of Eq. �9�,
and then seeking oscillatory solutions of Eq. �10� for N1 with
flexural fundamental frequency �, we obtain for N1,

�1 − i�ph�N1 − v0ph cos �N1� = N0�
	
0

kT0
�i�ph� −

T1

T0
� .

�12�

Here, the spatial variation of � is given by Eq. �8� and the
temperature difference T1=T−T0 is defined by the total en-
ergy balance in the scattering processes, i.e.,

1

8�3� dq	
� �N

�t
�

coll
= 0. �13�

Further analytical progress can be made by making several
simplifying assumptions: �i� assume the Debye model

0�q�=c0q with the q-independent velocity v0�c0 for the
phonon spectrum; and �ii� assume that the relaxation time ph
is also phonon mode-independent. Then, in treating the col-
lisional term in the relaxation approximation and expanding
Eq. �13� for the energy balance to first order, one obtains,

1

4�2� d cos �� dqq2	
�q�N1 =

−
T1

2�2� dqq2�	
0�q�
kT0

2

kN0�. �14�

The equation for the right hand side �rhs� is easily recog-
nized; the specific heat of phonon mode q is

S�q� = − �	
0�q�
kT0

2

kN0�,

and the heat capacity of the phonon subsystem �per unit vol-
ume� is

C =
1

2�2� dqq2S�q�;

therefore, the rhs of Eq. �14� reduces to CT1.
Furthermore, assuming the Grüneisen tensor � to be a

q-independent scalar constant as given by Eq. �8�, one can
multiply Eq. �12� by a phonon energy and then integrate over
modulus q to get an equation for the partially integrated pho-
non distribution function,

f�y,cos �,z� �
1

2�2� dqq2	
0N1.

Explicitly, one gets,

�1 − i�ph�f − lph cos �fy� = C�T1 − i�phT0��y,z�� ,

�15�

with Eq. �14� reducing to,
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1

2
�

−1

1

d cos �f = CT1.

Using Eq. �8� to express ��y ,z� via � and the flexural mode
deflection U�z�, it is convenient to further introduce a func-

tion f̃�ỹ , cos �� as

f�y,cos �,z� � CT0�1 − 2��tU��z� f̃�ỹ,cos �� ,

where ỹ=y / t. Here, the advantage lies in the explicit factor-

ization of the z dependence, i.e., f̃ is functionally the same
along the beam length and satisfies the equation,

�1 − i�ph� f̃ − l̃ph cos � f̃ ỹ = F̃ − i�ph�ỹ , �16�

where l̃ph= lph / t is a dimensionless system parameter and

2F̃�ỹ��	d cos � f̃ . Note that, alternatively, one could decide

to introduce ỹ=y / lph, t̃= t / lph, and l̃ph�1, but our choice
seems to result in a slightly more transparent scaling law
analysis for loss in the resonator. Lastly, Eq. �16� needs to be
accompanied by physically appropriate boundary
conditions21 and then solved either numerically directly or as
a series expansion.

In addressing the boundary condition, it is instructive to
present f as a sum of two functions: one symmetric with
respect to the angular argument of cos � and the other anti-
symmetric with respect to cos �; therefore,

f̃ = f̃ s + f̃ a.

Then 2F̃�	d cos � f̃ =	d cos � f̃ s alone, whereas f̃ a can be

expressed via f̃ s with an equation for f̃ s given by,

�1 − i�ph�2 f̃ s − l̃ph
2 cos2 � f̃ s� = �1 − i�ph��F̃ − i�ph�ỹ� .

Thus, in the case of perfectly reflecting boundary

conditions,21 function f̃ a vanishes at the beam edges, which

corresponds to f̃ s�=0 at ỹ= �1 /2. Expressing the solution for
fs as an expansion,

f̃ s�ỹ,�� = 

m

f̃s,m���sin�2m + 1��ỹ , �17�

and noticing that, identically,

ỹ = 

m

ỹm sin�2m + 1��ỹ ,

with coefficients ỹm�2�−1�m /�2�2m+1�2, it follows that the

coefficients f̃ s,m and their related angular integrals F̃m can
then be calculated analytically without much difficulty.

C. Phonon related losses in flexural beams—a single
constant scalar Grüneisen coefficient

As already mentioned in previous discussion, the problem
of losses in flexural beams is conceptually similar to a prob-
lem of sound attenuation in bulk dielectric crystals.14,15 In
the bulk discussions, an infinite domain with solutions in the
form of plane waves was analyzed; in this paper, the finite

boundaries force solutions on the finite domain in the pres-
ence of spatial inhomogeneities. The energy conservation
law enforces the condition that the average rate at which the
energy is removed from the flexural vibration is equal, in the
steady state process, to the rate of transferring energy from
the phonon system to the heat bath22 through

Z = − 

q,j
�H� �N

�t
�

coll
� . �18�

Using Eq. �10� to express the collisional term in Eq. �18� via
the time derivative of N and drift and diffusion terms, and
further removing terms that time average to zero in the
steady process, it is found that,

Z =
1

16�3�
V

dr� dq	
0 Re�N1
���

�t
� . �19�

With inverse resonator quality factor Q formally defined as
the fraction of the oscillation energy lost per radian of flex-
ural vibration, i.e.,

Q−1 =
Z

�W
, �20�

the final result for quality factor is found after substituting
the expression for the total flexural energy W given by Eq.
�5� and the average rate of energy transfer Z defined by Eq.
�19� into Eq. �20�.

In utilizing the previously made approximations: �i� a
large beam aspect ratio, �ii� the Debye model, and �iii� a
single constant scalar Grüneisen coefficient, one can perform
a number of partial integrations to reduce Eq. �19� to

Z = �
�1 − 2��2CT0�wt3

2
�

L

dz�U��z��2� dỹỹ Im�F̃�ỹ�� ,

�21�

in terms of function F̃ for a beam mode U. This gives

Q−1 = 6�1 − 2��2CT0E
−1�� dỹỹ Im�F̃�ỹ�� . �22�

With N1 �or f̃ and its cos �-integral F̃� determined, phonon-
related losses in the beam can be numerically evaluated. In

particular, if f̃ is expressed as a series expansion of the form
given in Eq. �17�, then,

Q−1 = 6�1 − 2��2CT0E
−1�


m

ỹm Im�F̃m� . �23�

Here, it is stressed that when the assumption of one-
dimensional thermal transport �case of a relatively long
beam, that is L� t� is not valid, N1 cannot be factorized to
effectively separate the coordinate z along the beam, thus,
leaving us with a more complex system of partial differential
equations to be solved numerically.

D. Losses in the presence of the Akhiezer effect

Adapting a heuristic based on only a single Grüneisen
constant precludes the manifestation of the Akhiezer effect.
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Therefore, a heuristic which allows us to capture the
Akhiezer effect is now developed. As a starting point in con-
sidering losses in acoustic waves in solids, Bömmel and
Darnsfeld14 have split all phonon modes into two distin-
guished groups—those experiencing positive temperature
changes and those experiencing negative or no temperature
changes. Following Ref. 14, we too assumed that all phonon
states can be split into two global groups labeled “1” and
“2,” with portion p1 of all phonons belonging to the first
group and portion p2=1−p1 belonging to the second one.
Both groups are further assumed to have an exactly identical
spectrum in absence of strain. For simplicity, the effect of the
applied strain will be controlled by mode-independent �for
each of two groups� Grüneisen constants �1 and �2. Then
�the symmetric portions of� the phonon distribution functions
f is in each group �i=1,2� can be found as a solution to the
system of equations,

�1 − i�ph�2 f̃ is − l̃ph
2 cos2 � f̃ is� = �1 − i�ph��F̃ − i�ph�iỹ� ,

with cos �-integrals defined as

2F̃i �� d cos � f̃ is, and F̃ = p1F̃1 + p2F̃2.

Solving this system analytically via series expansion, allows
to obtain Q as

Q−1 = 6�1 − 2��2CT0E
−1


m

ỹm Im�p1�1F̃1,m + p2�2F̃2,m� .

�24�

IV. NUMERICAL ANALYSIS AND DISCUSSION

In Fig. 1, graphical analysis for the phonon-related losses
�Q−1� is presented in frequency–beam thickness �� , t� coor-
dinates �logarithmic scales� for the double clamped flexural
resonator. The magnitude of the loss is indicated by the color
code: light for high Q or low losses; dark for low Q or high
losses. The thickness and the frequency axes to the left and
bottom of the graph are scaled in dimensionless units, t / lph
and �ph, respectively. Corresponding values for the right
and top axes are scaled specifically for crystalline silicon �Si�
at room temperature. Taking for Si the standard values of the
sound velocity c=5.86 km /s, the thermal conductivity �
=160 W /mK, and the heat capacity �per unit volume� C
=1.64�106 J /m3 K, one obtains for the characteristic pho-
non microscopic time constant ph�10 ps, which corre-
sponds to the phonon mean free path lph=cph�50 nm.
Other Si-specific numbers used in the present analysis are as
follows:6 density �=2330 kg /m3, Young’s modulus E
=1.69�1011 kg /m s2, and the �linear� thermal expansion
coefficient �T=2.8�10−6 K−1. These define the value of the
average Grüneisen constant �̄ as �0.29. Also, the Poisson
ratio �=0.27 is used.

In these graphs, the position of beams with length-to-
thickness aspect ratios of L / t=5, and 10 is marked by dotted
lines as indicated. As appropriate to the Euler-Bernoulli ap-
proximation, the analysis of the thermal phonon flow is con-

ducted for the case L� t as well as L� lph; in this case, the
simplifying assumption is invoked that phonon heat transfer
is primarily one-dimensional. Thus, only beam sizes with L
�5t �and with t not too much less than t= lph� are treated
rigorously �lower left part of the graphs�. Serious deviation
can be expected when these assumptions are not satisfied.

The Q values in Fig. 1 are calculated from Eq. �24�, which
is generally parametrized to reflect losses in the presence of
the Akhiezer effect. Specifically, three distinguishable cases
are considered in the framework of the generalized Bömmel–
Dransfeld approach: �a� �1=�2� �̄, �b� �1� �̄=−�2, and �c�
�1�2�̄�0, �2=0. For all cases, we have chosen the propor-
tions of the two groups of phonons to be p1=p2=0.5.

On physical grounds, results reflected in these graphs can
be conveniently analyzed with the help of the well-known
Zener model.5 As a background discussion relevant to this
model, macroscopic relations, such as the linear stress-strain
relation, with Young modulus E serving as a coefficient of
proportionality often deemphasize, for simplicity, the aspect
of temporal evolution. More generally, E is a function of the
modulation frequency � and is neither necessarily constant,
nor necessarily real, thus, giving rise to loss and memory
effects. The reason for this temporal aspect is that there is a
finite time necessary for the statistical correlations in the bath
to adjust to the system motion; therefore, friction �internal
friction� arises as a result of the nonlinear interaction of the
system with the bath, leading to transfer of excess potential
and kinetic energy from system to the bath. The magnitude
of friction is typically proportional to the ensemble average
of the system velocity �e.g., du /dt�.

A simple �and popular� phenomenological generalization
of the static Hooke’s law allowing build up time for strain
and stress4 leads to Lorentzian peaks in both the imaginary
part of Young’s modulus E��� and loss factor Q−1. This gen-
eralization, which is the basis of Zener’s model, suggests that
in the presence of the relaxation processes with characteristic
time , the inverse quality factor �losses� as a function of the
oscillation frequency � can be described by a universal de-
pendence,

Q−1 = �
�

1 + �22 .

It is clear that this functional dependence has a peak at
�peak=−1. On a log–log scale, this peak manifests itself as a
distinctive symmetric hump with 45° slopes: for ��1, the
processes are “isothermal” with a high level of environmen-
tal adjustment achieved during operation while in the oppo-
site limit of ��1, the motion is adiabatic as any adjust-
ment in the bath is too slow to result in notable friction. In
the presence of several relaxation mechanisms, several peaks
of different magnitudes �defined by the value of �� will be
observed.

For the fixed beam thickness, case �a� demonstrates a well
defined single peak in the losses as a function of frequency.
On the log–log �� , t� map, peak position follows a piecewise
linear dependence with a crossover region corresponding ap-
proximately to t= lph. At large beam thicknesses, the slope of
the linear dependence corresponds to tpeak��peak

−1/2 while at
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small thicknesses, the slope is tpeak��peak
−1 . As the Zener

model suggests, the position of this peak can be identified
with a characteristic time =�peak

−1 , defining some relaxation
process. From the slope of the peak position dependence, one
can further deduce scaling of  with t. At large thicknesses,
this characteristic time scales as t squared, which is typical
for diffusive processes. Indeed, since case �a� presents a sce-
nario of a single Grüneisen constant, frequencies of all
phonons are proportionally modified by strain and no distur-
bances in the local phonon distribution are created, although,
as a whole, the phonon distribution function corresponds to a
different temperature, i.e., the phonon population is either
heated or cooled. Thus, the only relevant process is the dy-
namical spatial redistribution of phonons. At large beam
thicknesses, this spatial redistribution is dominated by diffu-
sive transport �defining Fourier heat transfer� and is tempo-
rally slow with diff� t2. That is the microscopic phonon pic-
ture representation of the classical thermoelastic loss
mechanism originally considered by Zener. As the beam
thickness is reduced to become comparable to the phonon
mean free path, the scaling of the peak position changes
noticeably to � t to reflect a transition to ballistic phonon
transfer across the beam giving rise to the non-Fourier heat
flow, typical at short times and distances.

Case �b� provides conditions for a clear observation of the
Akhiezer effect. Since average �̄=p1�1+p2�2=0, the local
phonon temperature is not changed and the macroscopic heat
transfer does not take place. On the other hand, the local
phonon distribution is disturbed. Thus, the main process is
the spatially local intergroup �interbranch� thermal relax-
ation, which is, obviously, defined by the microscopic char-
acteristic time ph. As a result, the peak position closely cor-
responds to �peakph=1 and shows no dependence on beam
thickness for a substantially thick resonator. As the sharp
spatial inhomogeneities are introduced at t� lph, the phonon
ballistic transfer process becomes, first, comparable in effi-
ciency to interbranch relaxation and, later, dominates—the
regime changes and the peak position acquires dependence
on the mode frequency.

Case �c� with �1�2�̄�0, �2=0 demonstrates the realiza-
tion of a system where both thermoelastic and Akhiezer’s
mechanisms are present and of comparable strengths. As the
beam parameters vary, their interplay results in a complex
behavior of loss factor, captured in Fig. 1�c�. In particular,
two peaks are present at large beam thicknesses, which
merge and change their character as ballistic transfer be-
comes dominant.

For a given material, the pair of parameters �1 and �2 can
be uniquely specified. This can be realized through careful
evaluation of the average values and variations in the mode
specific Grüneisen constants available through experimen-
tally tabulated data for different phonon branches or through
values calculated from the second and third order elastic
moduli.15,21 It follows from provided data that the constants
�1 and �2 are typically highly unequal in magnitude, with
say ��1�� ��2�, favoring the choice made in case �c�. It should
be noted that our approach can be easily generalized to in-
corporate more than two groups of phonons, although we
feel that this further increase in complexity is unlikely to
capture any substantially new phenomena.
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FIG. 1. Magnitude of phonon assisted losses in Si double
clamped resonator at room temperature as a function of the flexural
frequency � and the beam thickness t. Color code: light—high Q,
low losses; dark—low Q, high losses. �a� single Grüneisen
constant—pure case of thermoelastic losses. At t� lph, the character
of phonon transport changes from diffusive to ballistic �Fourier vs
non-Fourier heat transfer�. �b� Two exactly equivalent groups of
phonon states with opposite Grüneisen constants—losses dominated
by the Akhiezer effect. �c� Interplay of both mechanisms �here, we
assume equality of the thermoelastic and microscopic phonon-
phonon prefactors�. Strictly speaking, only the lower left part of the
maps with L�5t satisfies the assumptions of the Euler-Bernoulli
theory; furthermore, the assumption of essentially one-dimensional
phonon transport requires L� lph.
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To put our numbers into perspective, the variation of Q−1

over the range of one and a half decades from its maximum
is explicitly displayed in Fig. 1. For the material parameters
chosen, the peak values of loss in both the thermoelastic
�diffusive� and Akhiezer regimes correspond to Q�7.5
�104 while in the ballistic regime, with absolute maximum
in the lower right corner, the peak loss has a Q value of
�2.2�104.

Overall, the following quantitative observations can be
made:

�i� Thermoelastic mechanism dominates in thick beams
with large aspect ratio well described by Euler-Bernoulli
beams. In particular, with scaling down Si beam, the peak in
losses is achieved at subgigahertz frequencies, after that, the
quality factor improves.

�ii� At about t= lph, the character of the phonon transfer
changes to ballistic, leading to a different scaling of the peak
position on the �� , t� map; this leads to saturation of losses
with further reduction of the structure.

�iii� Akhiezer effect is of minor importance for structures
with large aspect ratio well described by Euler-Bernoulli
equation. It noticeably contributes to losses only at the onset
of the regime of the ballistic phonon transfer where both
mechanisms merge.

�iv� In quantitative terms, at 1–10 GHz frequencies, a Si
NEMS resonator with L=5t has substantially higher losses
than a L=10t resonator.

V. SUMMARY AND CONCLUSIONS

In summary, during gigahertz frequency operation, the
phonon subsystem inside a flexural NEMS beam evolves
into a unique nonequilibrium dynamics due to a highly inho-
mogeneous strain pattern. Resulting nonequilibrium heat
generation and redistribution processes have been treated be-
yond the conventional heat diffusion and local temperature

approximation. An advanced theoretical analysis was formu-
lated and conducted in the Boltzmann framework to capture
the appropriate phonon dynamics inside flexural beams. In
the resulting study, the intrinsic mechanisms and related ana-
lytic principles, including scaling rules influencing NEMS
degradation, have been developed and expressed in a user-
friendly form for application.

The intriguing question of prohibitive high-Q operation
based on fundamental physical limitations and degradation
was also raised in this study. Overall, our analysis, using a
limited parameter set, shows no degradation in quality factor
with progressive miniaturization from thermoelastic and
Akhiezer effects; however, there appears to be a marginal
softening in quality factor observed for the Akhiezer compo-
nent when �ph�1 as noted in Fig. 1. Yet, it is commonly
reported in numerical and experimental NEMS studies that
reduction in resonator length leads to substantial reduction in
the quality factor Q.23,24 These observations tentatively sug-
gest that with down scaling, the microresonator losses are
determined, to a large extent, by surface related processes; in
fact, a larger fraction of the beam atoms reside at the surface,
so that the surface-to-volume �S /V� component grows lin-
early with beam miniaturization. Therefore, it is likely that
an alternative mechanism such as enhancement of the third
and fourth-order anharmonic phonon-phonon interactions in
the presence of the static strain in the surface layer might
lead to the direct dependence on the phonon characteristic
time ph

beam on the surface-to-volume ratio. Such an anhar-
monic effect can be incorporated into the general description
of the phonon flow of this analysis through a set of heuristic
parameters describing scattering and thermalization due to
surfaces or interfaces. This will be the natural extension of
the present investigation.
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